Nonparametric Bayesian Context Learning for Buried Threat Detection
نویسنده
چکیده
Nonparametric Bayesian Context Learning for Buried Threat Detection by Christopher Ralph Ratto Department of Electrical and Computer Engineering Duke University
منابع مشابه
Evolving Insider Threat Detection Stream Mining Perspective
Evidence of malicious insider activity is often buried within large data streams, such as system logs accumulated over months or years. Ensemble-based stream mining leverages multiple classification models to achieve highly accurate anomaly detection in such streams, even when the stream is unbounded, evolving, and unlabeled. This makes the approach effective for identifying insider threats who...
متن کاملAn Introduction to Nonparametric Hierarchical Bayesian Modelling with a Focus on Multi-agent Learning
In this chapter, we address the situation where agents need to learn from one another by exchanging learned knowledge. We employ hierarchical Bayesian modelling, which provides a powerful and principled solution. We point out some shortcomings of parametric hierarchical Bayesian modelling and thus focus on a nonparametric approach. Nonparametric hierarchical Bayesian modelling has its roots in ...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملBayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملBayesian Nonparametric Models
A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically chosen as the set of all possible solutions for a given learning problem. For example, in a regression problem the parameter space can be the set of continuous functions, and in a density estimation problem the space can consist of all densities. A Bayesian nonparametr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012